[Source: ScienceDaily] – One of the major challenges in modern vaccinology is to engineer vectors that are highly infectious, yet don’t cause illness. Trickier still is to ensure that such weapons against infectious disease can be safely disarmed, once their immunogenic work is done. Roy Curtiss, an investigator of vaccines and infectious diseases at Arizona State University’s Biodesign Institute, has pursued these goals for 30 years.
In his most recent study, published recently in the Proceedings of the National Academy of Science, Curtiss’ research team unveils what may prove a winning strategy in the fight against infant bacterial pneumonia.
Two new vaccine strains designed in Curtiss’ lab draw on the properties of an unlikely vaccine carrier—one generally associated with causing sickness rather than safeguarding the body against it. Salmonella typhimurium, a rod-shaped, motile pathogen is one of over 2000 strains or serotypes of the Salmonella constellation of bacteria. They are responsible for causing serious, sometimes fatal diseases, to which children under two years of age are particularly vulnerable.
For more information click here.